Abstract

Piezotronics and piezo-phototronics are two emerging fields that involve high performance piezoelectric semiconductor devices. The nonuniform strain can create nonlinear piezopotential even in nonpiezoelectric materials such as silicon. Here, we propose theory of quantum piezotronics under nonuniform strain using a typical example of the interaction between independently trapped charges under nonlinear piezopotential. The trapped-ion motional frequency along the x direction can increase from 4 MHz to 25 MHz, and the electric-field noise can decrease by 15 times under nonuniform strain. This piezotronic harmonic oscillator based on trapping wells not only provides a good understanding of quantum piezotronics but also a guide for developing peizotronic devices for quantum computing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.