Abstract

The dynamics of excitons in disordered molecular solids is studied theoretically, taking into account migration between different sites, recombination, and dissociation into free charge carriers in the presence of an electric field. The theory is applied to interpret the results of electric field-induced photoluminescence (PL) quenching experiments on molecularly doped polymers by Deussen et al. [Chem. Phys. 207, 147 (1996)]. Using an intermolecular dissociation mechanism, the dependence of the PL quenching on the electric field strength and the dopant concentration, and the time evolution of the transient PL quenching can be well described. The results constitute additional proof of the distinct exciton dissociation mechanisms in conjugated polymer blends and molecularly doped polymers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.