Abstract

A computer-aided method for accurately carrying out the Chapman-Enskog expansion of the Boltzmann equation, including its inelastic variant, is presented and employed to derive a hydrodynamic description of a dilute binary mixture of smooth inelastic spheres. Constitutive relations, formally valid for all physical values of the coefficients of restitution, are calculated by carrying out the pertinent Chapman-Enskog expansion to sufficient high orders in the Sonine polynomials to ensure numerical convergence. The resulting hydrodynamic description is applied to the analysis of a vertically vibrated binary mixture of particles (under gravity) differing only in their respective coefficients of restitution. It is shown that even with this “minor”difference the mixture partly segregates, its steady state exhibiting a sandwich-like configuration.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.