Abstract

Coherent interconversion between optical and mechanical excitations in an optomechanical cavity can be used to engineer a quantum heat engine. This heat engine is based on an Otto cycle between a cold photonic reservoir and a hot phononic reservoir [Phys. Rev. Lett. 112, 150602 (2014)]. Building on our previous work, we (i) develop a detailed theoretical analysis of the work and the efficiency of the engine, and (ii) perform an investigation of the quantum thermodynamics underlying this scheme. In particular, we analyze the thermodynamic performance in both the dressed polariton picture and the original bare photon and phonon picture. Finally, (iii) a numerical simulation is performed to derive the full evolution of the quantum optomechanical system during the Otto cycle, by taking into account all relevant sources of noise.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.