Abstract

The dispersion relations for bulk and surface plasmon-polaritons in a semi-infinite 1D photonic crystal interlayered with graphene are calculated in the presence of an applied magnetic field. The results are applied to SiO2 as the constituent material in geometry where the layers are arranged in a periodic array with the same layer thickness. The static magnetic field is applied perpendicular to the plane of layers. Numerical results are presented for the modes in THz range, up to 10 THz, to illustrate the important role of the applied magnetic field on the graphene sheets in modifying the polariton dispersion curves, especially for magnetic fields of the order of 1 T. It is found that the polariton frequencies and band gaps have a sensitive dependence on the electron scattering rate parameter (and hence the applied magnetic field strength) in the graphene sheets. Electromagnetic retardation effects are fully taken into account for the bulk bands, while for the surface modes (which are shown to have a novel non-reciprocal propagation characteristics) it is convenient to focus on the regime where retardation is small.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.