Abstract

We report for the first time the integration of silicon-doped hafnium oxide (HSO) antiferroelectric (AFE) material for enhanced floating-gate Flash memory speed by means of field-enhanced AFE polarization switching. An analytical description of the metal–ferroelectric–metal–insulator–semiconductor (MFMIS) stack physics during a write operation is introduced to study the effect of different stack optimization parameters on the interfacial oxide field. This, in turn, suggests different optimization routes for a ferroelectric field-effect transistor (FeFET) and Flash memories with a possible improved Flash interfacial field by AFE material integration. Improved Fowler–Nordheim tunneling based Flash speed of 300 ns is illustrated for the integrated devices. The theory and experiment of the MFMIS stack physics are discussed with emphasis on the role of stack parameters for optimized memory operation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.