Abstract

Some advances in fringe analysis technology for phase computing are presented. A full scheme for phase evaluation, applicable to automatic applications, is proposed. The proposal consists of: a fringe-pattern normalization method, Fourier fringe-normalized analysis, generalized phase-shifting processing for inhomogeneous nonlinear phase shifts and spatiotemporal visibility, and a phase-unwrapping method by a rounding-least-squares approach. The theoretical principles of each algorithm are given. Numerical examples and an experimental evaluation are presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.