Abstract
In multicell networks, unbalanced cell loading can lead to decreased system stability and reduced fairness among serviced users. In this paper, we propose theoretical-analysis-based distributed load balancing (DLB) over dynamic overlay clustering implemented over a multicell network. The proposed system is divided into two parts: DLB and overlay clustering. First, for DLB, we define the long-term expected load after deriving the long-term expected rate in terms of proportional fairness. We then introduce two algorithms: DLB for load dispersion and DLB for edge-rate enhancement (ERE). These algorithms operate in a distributed manner based on mathematical analyses and load balancing characteristics. Second, through overlay clustering, load balancing within each cluster is consecutively performed on neighboring clusters, which enables the algorithm to optimally approximate in a distributed manner. The simulation results show that approximately 90% of the near-optimal performance in terms of load variation and ERE can be achieved with low complexity by using the proposed schemes. In addition, we discuss aspects and tradeoffs of the load balancing system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.