Abstract

Abstract A theoretical model is presented to predict upper-and lower-bound text-entry rates using a stylus to tap on a soft QWERTY keyboard. The model is based on the Hick-Hyman law for choice reaction time, Fitts law for rapid aimed movements, and linguistic tables for the relative frequencies of letter-pairs, or digrams, in common English. The model's importance lies not only in the predictions provided, but in its characterization of text-entry tasks using keyboards. Whereas previous studies only use frequency probabilities of the 26 × 26 digrams in the Roman alphabet, our model accommodates the space har—the most common character in typing tasks. Using a very large linguistic table that decomposes digrams by position-within-words, we established start-of-word (space-letter) and end-of-word (letter-space) probabilities and worked from a 27 × 27 digram table. The model predicts a typing rate of 8.9wpm for novices unfamiliar with the QWERTY keyboard, and 30.1wpm for experts. Comparisons are drawn with empirical studies using a stylus and other forms of text entry.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.