Abstract

This paper presented the effects of finite dimensions of the sample and non-zero heat capacity of the strip on thermal conductivity determination with the transient hot-strip (THS) method. Through numerical analysis of temperature field within the system composed of the samples and the strip, the temperature transients at the strip surface were obtained to calculate the thermal conductivities of materials, which were compared to the exact values. The effect of heat losses out of the external surfaces of the sample and the heat capacity of the strip on thermal conductivity determination were then analyzed comprehensively. It is shown that the sample finite dimensions have great effect on thermal conductivity determination, especially on the materials with relatively higher thermal diffusivities, and the measured thermal conductivity always lower than the exact value due to the lower convective heat transfer coefficient out of the external surfaces of the sample. The measurement error is estimated less than 2.2 percent for the material with thermal diffusivity less than 4.0×10−6 m2/s with the sample dimensions of 120 mm × 60 mm (width × thickness) and the fitting time interval of 20–450s. The non-zero heat capacity of the strip has great effect on thermal conductivity determinations of the materials with relatively lower thermal diffusivities. The measurement error is estimated less than 5 percent for the material with thermal diffusivity larger than 0.8×10−7 m2/s with Cr20Ni80 alloy as the strip.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.