Abstract

In this work, the vibrational constants (ωe,ωexe) calculated by the variational algebraic method (VAM) and some other molecular constants (De,re,Be,αe) were used to construct the improved Hulburt–Hirschfelder (IHH) analytical potential energy function (APEF). Not only that, but the calculated VAM potential points are used as the ’true’ energies to determine the value of the variational parameter λ which is the pivotal fitting parameter in the IHH potential. With limited experimental data, high-precision IHH potential can be achieved by combining the VAM and the IHH APEF. This combination of the VAM and the IHH APEF is referred to be VAIHH APEF, which is employed to study the vibrational energies and potential energy curves (PECs) of SiC (X3Π) and SiS (X1Σ+) molecules, yielding full vibrational spectra and spectroscopic constants. The calculational results indicate that the VAIHH APEFs of SiC (X3Π) and SiS (X1Σ+) molecules are in good agreement with the experimental RKR potential points. Accurate PECs of SiC (X3Π) and SiS (X1Σ+) molecules imply that the VAIHH APEF is of high quality.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.