Abstract

The nonlinear interaction between electron-acoustic shock waves in a dissipative, non-Maxwellian plasma composed of cold fluid electrons, stationary background ions, and inertialess superthermal electrons has been studied. The effects of plasma parameters on the trajectory changes (i.e., phase shifts) of shock waves after their head-on collision is our main concern. The results indicate that the interactions between shocks are different from those of solitons. Also, it is found that the occurrence and variation of trajectory shifts may be due to the combined role played by the dispersion and dissipation of the colliding nonlinear structure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.