Abstract

In this paper, the electronic and magnetic properties of double perovskite La2−xSrxMnCoO6 (x = 0,1,2) have been studied using the local-spin-density approximation + U method. For the three compositions investigated, the low symmetry P21/n structure yields consistently lower energy than that of the high symmetry \hbox{$Fm\bar{3}m$} Fm3m structure. The strong electronic correlation and the orbital polarization of Co-d electrons play crucial roles. In agreement with experiments, we find that La2MnCoO6 is a ferromagnetic insulator with both Mn and Co ions in their high-spin states. The tilting of oxygen octahedrons is most significant in this case and is responsible for its insulating behavior; for LaSrMnCoO6, the ground state remains a ferromagnetic insulator with Mn and Co ions in their high-spin states. The optimized P21/n and \hbox{$Fm\bar{3}m$}Fm3m crystal structures are nearly the same, and the P21/n structure is stabilized by the spontaneous layer-wise antiferro-orbital ordering of Co-d electrons. We also predict that Sr2MnCoO6 is a ferromagnetic metal, and its electronic structure can be viewed as a rigid band shifting from that of LaSrMnCoO6. Due to the strong covalency between transition metal and oxygen ions, the valences of Mn and Co ions differ considerably from those derived from purely ionic model. Also, doping induced holes mainly go to oxygen sites though the density of states near the Fermi energy has strong mixed character. This feature, together with the orbital ordering phenomenon, should be observable via the X-ray near-edge absorption spectroscopy and the polarized X-ray diffraction spectra.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.