Abstract

The nuclei around magic number N = 126 are investigated in the deformed relativistic mean field (RMF) model with effective interactions TMA. We focus investigations on the N = 126 isotonic chain. The N = 126 shell evolution is studied by analyzing the variations of two-neutron (proton) separation energies, quadruple deformations, single particle levels etc. The good agreement of two-neutron separation energies between experimental data and calculated values is reached. The RMF theory predicts that the sizes of N = 126 shell become smaller and smaller with the increasing of proton number Z. However, the N = 126 shell exists in our calculated region all along. According to the calculated two-proton separation energies, the RMF theory suggests 220Pu is a two-proton drip-line nucleus in the N = 126 isotonic chain.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.