Abstract

The structural properties of several plutonium(IV) and (VI) complexes have been examined in the gaseous and aqueous phases using Kohn-Sham density functional theory calculations with scalar relativistic effective core potentials and the polarizable continuum solvation model. The aquo and nitrate complexes of PuO(2)(2+) and Pu(4+) were considered in addition to the aquo-chloro complexes of PuO(2)(2+). The nitrate and chloro- complexes formed with triphenylphosphine oxide (TPPO) and tributylphosphate (TBP) respectively were also studied. The structural parameters of the plutonyl complexes were compared to their uranyl and neptunyl analogues. The bond lengths and vibrational frequencies of the plutonyl complexes can generally be computed with sufficient accuracy with the pure PBE density functional with shorter bond lengths being predicted by the B3LYP functional. The structural parameters of the [PuO(2)Cl(2)L(2)] systems formed with TPPO and TBP as well as the aqueous [PuO(2)Cl(2)(H(2)O)(3)] complex are matched to previous experimental results. Overall, the inclusion of ligands in the equatorial region results in significant changes in the stretching frequency of the plutonyl group. The structural features of the plutonyl (VI) systems are rather similar to those of their 5f(0) uranyl and 5f(1) neptunyl counterparts. For the Pu(IV) aquo and nitrate complexes, the average of the calculated Pu-OH(2) and Pu-O(nitrate) bond lengths are generally within 0.04 Å of the reported experimental values. Overall Kohn-Sham DFT can be used successfully in predicting the structures of this diverse set of Pu(VI) and Pu(IV) complexes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.