Abstract
Using the gradient-corrected BPW91 method and 6311++G(2d,2p) basis sets, it was found that adsorption of benzene by iron atoms forms a multiple-decker sandwich (MDS) geometry for the ground state (GS) of Fe(2)-(C(6)H(6))(3), as Fe(2) is broken. Though decoordination occurs, the ligands are bonded symmetrically to the Fe sites by η(6) (for the two external rings) and two η(3) (for the central ring) Fe-C coordinations; this big amount of Fe-C bonds enhances the stability of the MDS GS. This is unexpected, as the experiment suggests MDS for TM(n)-(C(6)H(6))(m) species of earlier transition metals (TMs) and clusters covered with benzene, i.e., rice-ball (RB) structures, for late 3d atoms. However, preserving Fe(2), an RB state was found, quasi-degenerate with the GS, with a smaller amount of Fe-C contacts and a stronger Fe(2) bond. The MDS shows higher stability for electron attachment and deletion events, but its adiabatic electron affinity, 1.11 eV, differs more from the experiment (0.80 ± 0.1 eV) than the one (0.97 eV) for RB. Thus, MDS and RB states can appear in a sample of Fe(2)-(C(6)H(6))(3). Like the electron affinity, the ionization energy of the complex is also smaller than those of the metal and benzene moieties, but closer to the former, signifying that the electron, delocalized through the 3d-π bonds, is mainly deleted from the metallic units.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.