Abstract

AbstractA transferable force‐field of HMX/Estane interface is derived by first‐principles calculation and least square optimization. Based on the force‐field, the plastic bonded explosive consists of HMX and Estane is simulated by molecular dynamics. The polycrystal structure is obtained, and a set of thermodynamic properties are calculated, including the heat capacity, thermal expansion coefficients, bulk modulus, elastic constants and Hugoniot curve. We find that the mixture explosive has higher thermal expansion coefficient than single crystal, because the interface is debonding at high temperature condition.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.