Abstract

The bound rovibronic levels of the He-HF+ complex were calculated for total angular momentum J=1/2, 3/2, 5/2, 7/2, and 9/2 with the use of ab initio diabatic intermolecular potentials presented in Paper I and the inclusion of spin-orbit coupling. The character of the rovibronic states was interpreted by a series of calculations with the intermolecular distance R fixed at values ranging from 1.5 to 8.5 A and by analysis of the wave functions. In this analysis we used approximate angular momentum quantum numbers defined with respect to a dimer body-fixed (BF) frame with its z axis parallel to the intermolecular vector R and with respect to a molecule-fixed (MF) frame with its z axis parallel to the HF+ bond. The linear equilibrium geometry makes the He-HF+ complex a Renner-Teller system. We found both sets of quantum numbers, BF and MF, useful to understand the characteristics of the Renner-Teller effect in this system. In addition to the properties of a "normal" semirigid molecule Renner-Teller system it shows typical features caused by large-amplitude internal (bending) motion. We also present spectroscopic data: stretch and bend frequencies, spin-orbit splittings, parity splittings, and rotational constants.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.