Abstract

Ab initio calculations of the dissociation process CH2N2 → CH2 + N2 are presented. Calculations were made on the ground 1A1 state as well as on the first few excited states (3B1, 1B1, 1A1*) necessary to the description of the dissociation mechanism in point group C2v symmetry. The variation of energy was determined as a function of the parameters RCH-RNN and θHCH at several RCN values. Most results were obtained by using a basis set of Gaussian lobe functions contracted to “double-zeta” accuracy. A few calculations were made with the addition of polarization functions on all centers. The equilibrium geometry of the ground state, determined from coupled quadratic equations in the molecular parameters, is in satisfactory agreement with experimental values. The dissociation paths on the potential energy surfaces were determined. The locus of intersection points of the two 1A1 states is described; the avoided crossing of the two potential surfaces was determined from CI calculations based on an “intermediate” Hamiltonian. The geometric and electronic rearrangements due to dissociation as well as the bonding characteristics of the orbitals are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.