Abstract

The electronic structures and optical properties of oligothiophene substituted spirofluorenes are investigated theoretically with semi-empirical quantum chemical calculations. A theoretical investigation of the interaction between two perpendicular π-systems of various oligothiophene substituted spirofluorenes is conducted. The results demonstrate that the interaction between two perpendicular branches is reduced by oligothiophene substitutions. Photoexcitation induced relaxation is mainly located on one of the equivalent branches or the branch with longer conjugation length. In addition to these benefits brought by 9,9-spirobifluorene center, the specific oligothiophene moieties linked to the spiro center also have properties of significant merit, such as the ability to tune energy levels and emission colors by controlling the conjugation length.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.