Abstract

Ab initio quantum mechanics and ONIOM calculations were used to study solvent and substituent effects on the reactions of 1,4-benzoquinone with cyclopentadiene and cyclohexadiene derivatives in tetrahydrofuran and greater water solvents. These calculations revealed (i) that increasing the number of electron donating methyl group substituents and (ii) the proximity of substituents to the reacting carbons (carbon atoms which contribute to the forming C—C bonds) on the diene, promote charge transfer from the diene to the dienophile in the transition state. These effects increase the negative charge on the oxygen atoms, destabilize the transition state in the organic solvent by increasing steric interactions, and stabilize the transition state in water solvent by increasing the strength of hydrogen bonding. These results, along with consideration of variations in the solvent-accessible surface area (SASA) confirmed that the dramatic acceleration in the rate of the studied reactions in water solvent arise in part from hydrophobic association of the reactants, but predominantly arise from hydrogen bonding between water molecules and the polarized transition state.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.