Abstract

A thorough understanding of the adsorption of molecules on metallic surfaces is a crucial prerequisite for the development and improvement of functionalized materials. A prominent representative within the class of π-conjugated molecules is 3,4,9,10-perylene-tetracarboxylic acid dianhydride (PTCDA) which, adsorbed on the Ag(111), Au(111) or Cu(111) surfaces, shows characteristic trends for work-function modification, alignment of molecular levels with the substrate Fermi energy and binding distances. We carried out density functional theory (DFT) calculations to investigate to what extent these trends can be rationalized on a theoretical basis. We used different density functionals (DF) including a fully non-local van der Waals (vdW) DF capable of describing dispersion interactions. We show that, rather independent of the DF, the calculations yield level alignments and work-function modifications consistent with ultra-violet photoelectron spectroscopy when the monolayer is placed onto the surfaces at the experimental distances (as determined from x-ray standing wave experiments). The lowest unoccupied molecular orbital is occupied on the Ag and Cu surfaces, whereas it remains unoccupied on the Au surface. Simultaneously, the work function increases for Ag but decreases for Cu and Au. Adsorption distances and energies, on the other hand, depend very sensitively on the choice of the DF. While calculations in the local density approximation bind the monolayer consistently with the experimental trends, the generalized gradient approximation in several flavors fails to reproduce realistic distances and energies. Calculations employing the vdW-DF reveal that substantial bonding contributions arise from dispersive interactions. They yield reasonable binding energies but larger binding distances than the experiments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.