Abstract

Various density functional theory (DFT) and ab initio MP2 and CCSD methods were employed in calculations of arsenic isotropic and anisotropic hyperfine parameters in three small radicals, AsH(2), AsO(2), and H(2)AsO. Convergent basis sets for these calculations were specially derived starting from Dunning's correlation-consistent sets. DFT methods proved to be particularly appropriate choice, because the results obtained with the suitable functionals are in accordance with the available experimental values. Additionally, mechanisms of hyperfine couplings were investigated by examining individual orbital contributions to spin density. The spin polarization mechanism in AsH(2) was studied by evaluating one- and two-electron integrals in spin-restricted and unrestricted case. Apart from nonrelativistic, scalar-relativistic Douglas-Kroll-Hess DFT calculations were performed to examine relativistic impacts on spin density distribution.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.