Abstract

In this work we report a theoretical study of the helix structure and chiral discrimination on the interactions between the chiral cysteine–cysteine. Two reasonable geometries on the potential energy hypersurface of the cysteine–cysteine system are considered with the global minimum. Accurate geometric structures, relative stabilities, harmonic vibrational frequencies, and infrared (IR) intensities were investigated. To take into account the water solvation effect, the Onsager model within the self-consistent reaction field (SCRF) method and the polarized continuum (PCM) method were used to evaluate the interaction energy, ΔGsolv at the same level employed in the gas phase. The results indicate that the polarity of the solvent plays an important role in the structures and relative stabilities of different isomers. Computational results indicate that the global minimum should be conformer I regardless of whether in the gas phase or in aqueous solution, which differs from previous theoretical reports. © 2005 Wiley Periodicals, Inc. Int J Quantum Chem, 2005

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.