Abstract

In this work, the mechanism of general base-catalyzed hydrolysis of aryl esters is investigated in vacuo with density functional theory and in solutions with a polarized continuum model. The hydrolysis is found to proceed via a concerted mechanism featuring simultaneous addition and elimination steps accompanied by proton transfers, consistent with experimental evidence. Reasonable agreement with measured kinetic isotope effects provides additional validation. It is found that solvation substantially lowers the transition state energy, but has a small effect on the reaction exothermicity. An enzyme oxyanion hole, modeled by an ammonia molecule hydrogen bonded to the acyl carbonyl oxygen, is found to stabilize the near-tetrahedral transition state. Implications of these findings for the hydrolysis step of the dehalogenation reaction catalyzed by 4-chlorobenzoyl-CoA dehalogenase are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.