Abstract
Spin transfer torque in a multilayer magnetic system can be understood in terms of interaction between a normal metal and a ferromagnetic layer on the multilayer, in which the interaction is characterized by the magnetic susceptibility. Most of experimental studies on this subject utilizes heavy metals, such as Pd and Pt, while a recent theory assumes a light metal as the normal metal. We aim to reconcile this discrepancy and achieve consistency with the experiments by studying magnetic susceptibility of Pd and Pt. We theoretically investigate the complex magnetic susceptibility of Pd and Pt by combining Tight-binding Approximation, Hubbard Model, and Density Functional Theory. We calculate a single band susceptibility for Pd and Pt. Our results show that the band structure is dominated by the d-orbitals and the susceptibility is enhanced by its large repulsive interaction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.