Abstract

This work demonstrates the enhancement of the power conversion efficiency of thin film organic-inorganic halide perovskites solar cells by embedding triple-core-shell spherical plasmonic nanoparticles into the absorber layer. A dielectric-metal-dielectric nanoparticle can be substituted for embedded metallic nanoparticles in the absorbing layer to modify their chemical and thermal stability. By solving Maxwell's equations with the three-dimensional finite difference time domain method, the proposed high-efficiency perovskite solar cell has been optically simulated. Additionally, the electrical parameters have been determined through numerical simulations of coupled Poisson and continuity equations. Based on electro-optical simulation results, the short-circuit current density of the proposed perovskite solar cell with triple core-shell nanoparticles consisting of dielectric-gold-dielectric and dielectric-silver-dielectric nanoparticles has been enhanced by approximately 25% and 29%, respectively, as compared to a perovskite solar cell without nanoparticles. By contrast, for pure gold and silver nanoparticles, the generated short-circuit current density increased by nearly 9% and 12%, respectively. Furthermore, in the optimal case of the perovskite solar cell the open-circuit voltage, the short-circuit current density, the fill factor, and the power conversion efficiency have been achieved at 1.06 V, 25 mAcm-2, 0.872, and 23.00%, respectively. Last but not least, lead toxicity has been reduced due to the ultra-thin perovskite absorber layer, and this study provides a detailed roadmap for the use of low-cost triple core-shell nanoparticles for efficient ultra-thin-film perovskite solar cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.