Abstract

Development of triaryamine‐based nonmetallic dye sensitizers is a hot topic in the solar cell research. A series of triaryamine‐based dyes WS1–WS7 were designed with W1 as the prototype. Density functional theory (DFT) and time‐dependent‐DFT calculations were used to investigate the effects of the attached donor D on the absorption spectra and electronic properties of the dyes. The light‐harvesting efficiency (LHE), hole injection force (ΔGinj), dye regeneration force (ΔGreg), and charge recombination force (ΔGCR) for all the dyes were predicted. The insertion of D not only results in a red shift in the absorption spectra for all dyes but also achieves a broader absorption for visible light. Compared with that of the prototype, the absorption peak of the dye WS7 has a red shift of 95 nm and an oscillator strength increase of 29%. The absorption peak of WS7 is wider and stronger, and the absorption range extends to 900 nm. The LHE and ΔGreg values of WS7 are 0.991 and −1.49 eV, respectively. On overall evaluation, WS7 is a promising candidate of a p‐type dye sensitizer with good light absorption and dye regeneration efficiency.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.