Abstract

On the basis of density functional theory (DFT) and molecular dynamics (MD), the structural, electronic, and mechanical properties of the energetic material bicyclo-HMX have been studied. The crystal structure optimized by the LDA/CA-PZ method compares well with the experimental data. Band structure and density of states calculations indicate that bicyclo-HMX is an insulator with the band gap of ca. 3.4 eV and the N-NO(2) bond is the reaction center. The pressure effect on the bulk structure and properties has been investigated in the range of 0-400 GPa. The crystal structure and electronic character change slightly as the pressure increases from 0 to 10 GPa; when the pressure is over 10 GPa, further increment of the pressure determines significant changes of the structures and large broadening of the electronic bands together with the band gap decreasing sharply. There is a larger compression along the c-axis than along the a- and b-axes. To investigate the influence of temperature on the bulk structure and properties, isothermal-isobaric MD simulations are performed on bicyclo-HMX in the temperature range of 5-400 K. It is found that the increase of temperature does not significantly change the crystal structure. The thermal expansion coefficients calculated for the model indicate anisotropic behavior with slightly larger expansion along the a- and c-axes than along the b-axis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.