Abstract

The planetary boundary layer (PBL), which directly interacts with the underlying surface, differs significantly in its nature from the low-turbulent stably stratified free atmosphere. Fluctuations of the Earth’s surface heat balance immediately affect the PBL and assimilate there owing to the effective mechanism of turbulent heat transfer. In this case the upper boundary of the PBL plays the role of a cover, preventing the direct penetration of thermal effects and contaminants into an overlying atmospheric layer. In view of this, air pollution is especially dangerous when associated with shallow PBL. In addition, local peculiarities of climate change are mainly determined by the PBL height due to the high sensitivity of thin stably stratified PBLs to the thermal effects. Deep convective PBLs are not very sensitive to weak thermal effects, but they significantly affect the formation of convective cloudiness and the climate system as a whole by means of the turbulent entrainment of the thermal energy, humidity, aerosols, and other admixtures through the upper boundary. The PBL height and turbulent entrainment must be calculated when simulating and forecasting air pollution, abnormal frosts and heat, and other hazardous phenomena. In this paper we discuss the state-of-the-art knowledge in the area of PBL height simulation and suggest a new model of turbulent entrainment for convective PBLs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.