Abstract
The electron paramagnetic resonance (EPR) g factors and local structures for Ni3+ in LiAlyCo1–yO2 as the cathode materials for lithium-ion batteries are theoretically investigated at various Al concentrations y (= 0.1, 0.5, 0.8 and 1.0). The [NiO6]9– clusters are subject to the tetragonal elongation distortions along the C4 axis owing to the Jahn–Teller effect and the different degrees of distortions are characterised by the slightly increasing relative elongation ratio ρ (and also crystal-field strength and covalency) with y. In pure LiAlO2 (y = 1.0), the [NiO6]9– cluster exhibits the largest ρ (≈1.4%) and an additional relative variation ratio τ (≈1.4%) of the planar bond lengths, responsible for the perpendicular g anisotropy δg = (gx – gy). The number of impurity Ni3+ centres increases from one at y = 0 and 1.0 to two at y = 0.1 and 0.8 and reaches the maximum four at y = 0.5, in accordance with the increasing degree of disorder of the systems. The distinct impurity centres for the same y may be accompanied by the comparable energies of the ground and near excited states, similar to ‘resonant states’ with slightly different local elongation distortions and tetragonal level splittings. The present studies will be helpful to understand the relationships between local structures and performances of LiAlyCo1–yO2 type cathode materials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.