Abstract

In this work, the potential of corrosion inhibition of four chloroquine derivatives; N4-(7-Chloroquinolin-8-ol-4-yl)-N1,N1-diethylpentane-1,4 diamine (M2), N4-(7-Chloroquinolin-8-amino-4-yl)-N1,N1-diethylpentane-1,4 diamine (M3) and N4-(5-bromo-7-Chloroquinolin-8-amino-4-yl)-N1,N1-diethylpentane-1,4-diamine (M4) were investigated. Their chemical descriptors which include molecular volume, softness, chemical hardness, electronegativity, fraction (ΔN) and electrophilicity index (ω) dipole moments, surface of the molecule, and electronic parameters which include the EHOMO (the highest occupied molecular orbital of energy); ELUMO (lowest unoccupied molecular orbitals of energy) and energy gap (ELUMO-EHOMO) were calculated using the DFT/B3LYP/6-311 G approach. The results revealed an established correlation between the electronic structures and the quantum parameters of the studied molecules together with their inhibition efficiency toward corrosion process. Also chloroquine derivatives with –NH3 substituent: M3 and M4 were predicted to have enhanced inhibition efficiency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.