Abstract
Based on a four-layered self-doped t-J type model and the slave-boson mean-field approach, we study theoretically the superconductivity in the electron-doped and hole-doped layers. The neighbor layers are coupled through both the single electron interlayer hopping and pair tunneling effect. The superconducting gap magnitude for the electron-doped band is nearly twice that of the hole-doped one, which contrasts with our previous understanding of the electron-hole asymmetry in high-T(c) superconductors but is consistent with recent angle-resolved photoemission spectroscopy experiments in four-layered materials Ba2Ca3Cu4O8F2. Our results propose that the pair tunneling effect is important to examine the multilayered superconducting materials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.