Abstract

The ground and many excited states of the Mg(+)He van der Waals molecular system have been explored using a one-electron pseudopotential approach. In this approach, effective potentials are used to consider the Mg(2+) core and the electron-He effects. Furthermore, a core-core interaction is included. This has reduced the number of active electrons of the Mg(+)He, to be considered in the calculation, to a single valence electron. This has permitted to use extended Gaussian basis sets for Mg and He. Therefore, the potentianl energy and dipole moments calculations are carried out at the Hartree-Fock level of theory, and the spin-orbit effect is included using a semiclassical approach. The core-core interaction for the Mg(2+)He ground state is included using accurate CCSD(T) calculations. The spectroscopic constants of the Mg(+)He electronic states are extracted and compared with the existing theoretical works, where very good agreement is observed. Moreover, the transition dipole function has been determined for a large and dense grid of internuclear distances including the spin-orbit effect.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.