Abstract

The interaction between plates and foundations is a typical problem encountered in geotechnical engineering. The long-term plate performance is highly dependent on the rheological characteristics of ground soil. Compared with conventional linear rheology, the fractional calculus-based theory is a more powerful mathematical tool that can address this issue. This paper proposes a fractional Merchant model (FMM) to investigate the time-dependent behavior of a simply supported rectangular plate on viscoelastic foundation. The correspondence principle involving Laplace transforms was employed to derive the closed-form solutions of plate response under uniformly distributed load. The plate deflection, bending moment, and foundation reaction calculated using the FMM were compared with the results obtained from the analogous elastic model (EM) and the standard Merchant model (SMM). It is shown that the upper and lower bound solutions of the FMM can be determined using the EM. In addition, a parametric study was performed to examine the influences of the model parameters on the time-dependent behavior of the plate–foundation interaction problem. The results indicate that a small fractional differential order corresponds to a plate resting on a sandy soil foundation, while the fractional differential order value should be increased for a clayey soil foundation. The long-term performance of a foundation plate can be accurately simulated by varying the values of the fractional differential order and the viscosity coefficient. The observations from this study reveal that the proposed fractional model has the capability to capture the variation of plate deflection over many decades of time.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.