Abstract

Gupta and Density Functional Theory (DFT) calculations were performed to investigate of structural and magnetic behaviors of 19 atom FenRh[Formula: see text] ([Formula: see text]–19) nanoalloys. A double icosahedron structure was considered for FenRh[Formula: see text] ([Formula: see text]–19) nanoalloys. Significantly, the effects of Fe atom addition on the chemical ordering, stability and total magnetic moments of the nanoalloys were investigated. Local optimization results at the Gupta level show that the Fe atoms are located in the center of the double icosahedron structure and finally in the equatorial region on the surface. The mixing energy analysis obtained that Fe[Formula: see text]Rh7 and Fe4Rh[Formula: see text] nanoalloys are the most stable compositions at Gupta and DFT levels, respectively. It was found that FenRh[Formula: see text] ([Formula: see text]–19) nanoalloys are energetically suitable for mixing at both Gupta and DFT levels. Also, the bond order parameter result is compatible with the mixing energy analysis result. The total magnetic moments of the FenRh[Formula: see text] ([Formula: see text]–19) nanoalloys increase with the addition of the Fe atom, which is a ferromagnetic metal.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.