Abstract

Hexachlorocyclohexanes (HCHs) have been widely explored as biological compounds during the last century. However, most of them were banned due to their potential toxicity in humans, animals, and the environment. Revisiting HCHs to explore their biological activity while improving key features is valuable and may lead to a new class of pesticides that utilizes the biological response of HCHs without their toxic characteristics. In this sense, the fluorine atom can be a possible alternative since a large number of therapeutics and agrochemicals have been developed with this halogen in their structure. We have evaluated herein the conformational behavior of HCHs and their bioisosteric fluorinated compounds, namely, hexafluorocyclohexanes (HFHs), through quantum-chemical calculations. We also explored the potential of the HCH and HFH isomers as biological compounds by docking them inside three possible targets. It was demonstrated that HCH and HFH have similar ligand-protein interactions with three pockets: the picrotoxin and barbiturate sites of the GABAA receptor and the ryanodine receptor. The results support HFHs as possible alternatives for HCHs since the replacement of Cl with F does not forfeit the main ligand-protein interactions. Finally, we demonstrated that HFHs have a lower log P than HCHs by almost two logarithmic units. This result highlights the role of fluorine in distribution and bioaccumulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.