Abstract

We develop a density functional theory model for the electrochemical growth and dissolution of Li(2)O(2) on various facets, terminations, and sites (terrace, steps, and kinks) of a Li(2)O(2) surface. We argue that this is a reasonable model to describe discharge and charge of Li-O(2) batteries over most of the discharge-charge cycle. Because non-stoichiometric surfaces are potential dependent and since the potential varies during discharge and charge, we study the thermodynamic stability of facets, terminations, and steps as a function of potential. This suggests that different facets, terminations, and sites may dominate in charge relative to those for discharge. We find very low thermodynamic overpotentials (<0.2 V) for both discharge and charge at many sites on the facets studied. These low thermodynamic overpotentials for both discharge and charge are in very good agreement with the low kinetic overpotentials observed in recent experiments. However, there are other predicted paths for discharge/charge that have higher overpotentials, so the phase space available for the electrochemistry opens up with overpotential.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.