Abstract
DFT calculations have been conducted to gain insight into the mechanism and kinetics of the esterification of α-tocopherol with succinic anhydride catalyzed by a histidine derivative or an imidazolium-based ionic liquid (IL). The two catalytic reactions involve an intrinsically consistent molecular mechanism: a rate-determining, concerted nucleophilic substitution followed by a facile proton-transfer process. The histidine derivative or the IL anion is shown to play a decisive role, acting as a Brönsted base by abstracting the hydroxyl proton of α-tocopherol to favor the nucleophilic substitution of the hydroxyl oxygen of α-tocopherol on succinic anhydride. The calculated free energy barriers of two reactions (15.8 kcal/mol for the histamine-catalyzed reaction and 22.9 kcal/mol for the IL-catalyzed reaction) together with their respective characteristic features, the catalytic reaction with a catalytic amount of histamine vs the catalytic reaction with an excessed amount of the IL, rationalize well the experimentally observed kinetics that the former has faster initial rate but longer reaction time while the latter is initiated slowly but completed in a much shorter time.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.