Abstract

A theoretical approach to the understanding of the biochemical mechanisms of indirect action of ionizing radiation on SV40 DNA in aqueous solution is presented. The extent of OH attack on the sugar moiety and bases has been calculated. A realistic model for the DNA (in B form) based on available X-ray diffraction data is used and specific reaction sites for the OH radicals are obtained. A Monte Carlo scheme is used to follow the diffusion and reaction of the OH radicals. Effects of track structure have been considered and the single strand break D 37 values for 14 MeV electrons (low-LET) and 670 MeV/u and 40 MeV/u neon particles are presented. Calculated results are in agreement with available experimental data. It has been found that regardless of the qualities of radiation, 80% of the OH attack on DNA is on the bases and 20% is on the deoxyribose. From probability considerations only, it appears that the number of double strand breaks varies linearly with dose.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.