Abstract

The potential distribution and work function of a graphene surface modified by various types of silanes are investigated by first principles quantum mechanical calculations to establish its surface hydrophobicity hierarchy. It is found that the work function relies on the electronegativity of atoms on silane. The localization feature of interaction between silane and the graphene surface is demonstrated by the electron density difference. The work function is demonstrated to be a critical quantity in understanding the surface polarizability and thereby the surface wetting properties. By performing contact angle measurements experimentally using water as the probe fluid, surfaces grafted with different silanes show hydrophobicity variation that is found to follow the reverse trend to that of the proposed surface polarizability obtained through the work function calculation. The work function-dependent contact angle can be fitted with a linear equation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.