Abstract

Potential sodium discharge in the containment during postulated Beyond Design Basis Accidents (BDBAs) in Sodium-cooled Fast Reactors (SFRs) would have major consequences for accident development in terms of energetics and source term. In the containment, sodium vaporization and subsequent oxidation would result in supersaturated oxide vapours that would undergo rapid nucleation creating toxic aerosols. Therefore, modelling this vapour nucleation is essential to proper source term assessment in SFRs. In the frame of the EU-JASMIN project, a particle generation model to calculate the particle generation rate and their primary size during an in-containment sodium pool fire has been developed. Based on a suite of individual models for sodium vaporization, oxygen natural circulation (3D modelling), sodium-oxygen chemical reactions, sodium-oxides-vapour nucleation and condensation, its consistency has been partially validated by comparing with available experimental data. As an outcome, large temperature and vapour concentration gradients set over the sodium pool have been found which result in large particle concentrations in the close vicinity of the pool.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.