Abstract

Abrasive waterjet (AWJ) peening can be used for metal surface strengthening by introducing near-surface plastic strain and compressive residual stress. The present studies seldom focus on residual stress by AWJ peening of targets with different geometrical features. In fact, those targets usually exist on some machine parts including gear roots, shaft shoulders, and stress concentration areas. According to Hertz theory of contact and Miao's theoretical model for predicting residual stress of flat surface, this paper developed a theoretical model for investigating residual stress of targets with different geometrical features including concave arc surface, concave sphere surface, convex arc surface, and sphere surface. AWJ peening of targets with different geometrical features and different radii of Gaussian curved surface was simulated by abaqus. Theoretical results were consistent with numerical simulation results and published experimental results (H. Y. Miao, S. Larose, et al., 2010, “An analytical approach to relate shot peening parameters to Almen intensity,” Surf. Coat. Technol., 205, pp. 2055–2066; Cao et al., 1995, “Correlation of Almen arc height with residual stresses in shot peening process”, Mater. Sci. Technol. 11, pp. 967–973.), which will be helpful for predicting residual stress of gear roots, shaft shoulders, and stress concentration areas after AWJ peening. The research results showed that under the same peening parameters, σmax, σtop, dmax, and dbottom in concave surface (including concave arc surface and concave sphere surface) were the maximum; σmax, σtop, dmax, and dbottom in convex surface (including convex arc surface and sphere surface) were the minimum; for concave surface, σtop, σmax, dbottom, and dmax decreased, respectively, with target radius; for convex surface, σtop, σmax, dbottom, and dmax increased, respectively, with target radius.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.