Abstract

The optical emission spectrum of the second positive system of N2(C3uB3g)isanalyzed and calculated based on the energy structure of nitrogen radical triplet system. Some key parameters of the equation for the radiative transition intensity are evaluated theoretically, including the potentials of the upper and lower states obtained from diagonalizing their Hamiltonian matrices, the electronic transition moments calculated by using r-centroid approximation, and the Einstein coefficients of different vib-rotational levels. For comparing with the theoretical spectrum, we achieve the measured results from corona discharge experiments of N2 and Ar. By fitting the measured spectral intensities and the calculated ones, the vibrational and the rotational temperatures are determined approximately to be 4300 K and 800 K. The results also demonstrate that with the reduction of nitrogen concentration, the intensity of N2 radiative state first increases and then decreases due to Penning excitation from argon metastable states. The experimental results verify the correctness of the theoretical calculations on the second positive system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.