Abstract

Air gap membrane distillation (AGMD) is an innovative membrane separation technique for pure water extraction from aqueous solutions. In this study, both theoretical and experimental investigations are carried out on AGMD of different aqueous solutions, namely, tap water, salted water, dyed solutions, acid solutions, and alkali solutions. A simple mechanistic model of heat and mass transfer associated with AGMD is developed. Simple relationships of permeate flux, total heating or cooling load and thermal efficiency of AGMD with respect to the membrane distillation temperature difference are obtained. Effects of solution concentration and the width of the air gap in AGMD are analyzed. In the experimental study, the experiments were conducted using 1m PTFE membrane with a membrane distillation temperature difference up to 55∘C. The AGMD system yields a permeate flux of pure water of up to 28kg/m2h. Direct comparison of the experimental results with the proposed modeling predictions shows a fairly good match.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.