Abstract
The perovskite BaZrO3 has high phase stability from room temperature to its melting point and therefore is regarded as a promising candidate for various high-temperature applications. In this work, the mechanical and thermal properties of BaZrO3 at high temperatures are investigated by combining first-principles calculations and experimental approaches. BaZrO3 has moderate mechanical properties and low thermal conductivity, being comparable to other zirconium-based and silicate structural ceramics. Its remaining Young's modulus of 174.4 GPa at 1523 K is 81.6% of 213.8 GPa at room temperature. The residual flexural strength of 127.8 MPa at 1273 K is 74% of 172.4 MPa at room temperature, while the residual value at 1673 K is still 53.4 MPa. The thermal conductivity of BaZrO3 is 5.75 W m−1 K−1 at 298 K and decreases to 2.81 W m−1 K−1 at 1473 K. The good high temperature mechanical and thermal properties ensure the potential high temperature applications of BaZrO3 and our results are expected to arouse the design of BaZrO3-based ceramics in the near future.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.