Abstract

A simplified model of the absorption coefficient of traditional Helmholtz resonators (THR) was established, and the influence of different geometric parameters on the absorption coefficient of THR was analyzed. To realize the low-frequency broadband acoustic structure design, an accurate theoretical model for the sound absorption coefficient of the curled acoustic metasurface (CAM) unit was established. Based on the complex frequency plane method (CFPM), the CAM units with perfect sound absorption at four discrete frequencies were designed. The low-frequency broadband acoustic metasurfaces in parallel under decoupled and coupled conditions were studied, and the thickness is only 12 mm. The high efficiency of sound absorption above 0.8 was achieved in the frequency range of 758 Hz–940 Hz. The experiment verifies the efficient sound absorption effect of the CAM unit and the broadband sound absorption effect under coupled conditions. The research in this paper has a certain potential applications for low-frequency broadband noise control technology.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.