Abstract

This paper studies the formation mechanism of surface waviness in ultra-precision grinding. A dynamics model of the aerostatic bearing wheel spindle is developed to discuss its vibration characteristics. The surface waviness formation models are established considering the wheel spindle vibration (WSV) and non-uniform wheel topography (NWT) as the origins of waviness. Grinding experiments are conducted. The results show that the WSV has less influence on surface generation at higher frequencies and speed ratios. In addition, the NWT plays a major role in the waviness formation for the coarse wheel, whereas for the fine wheel, surface waviness is primarily influenced by the WSV, especially at the fundamental frequencies. This study is useful for optimizing grinding conditions to improve surface quality and tribological properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.