Abstract

Using first-principles density-functional theory (DFT) computations, we have predicted a new post-cotunnite (OII) phase of hafnia (HfO2) at high pressures. Our computations, using the generalized gradient approximation (GGA), predict a phase transition from OII to a Fe2P-type structure at ~ 120 GPa (~ 140 GPa) with a slight volume collapse at the transition pressure of ~ 0.2% (~ 0.1%) between the two phases using the second- (third-) order Birch-Murnaghan equation of state, respectively. The prediction of the new phase is consistent with recent experiments and computations performed on similar dioxides titania (TiO2) and zirconia (ZrO2) at extreme pressure-temperature (p-T) conditions. Importantly, our theoretical prediction for the OII → Fe2P transition in HfO2 is experimentally supported by the re-analysis of X-ray diffraction patterns of HfO2 at extreme pressure-temperature conditions. Additionally, the equation of state and hardness of the predicted phase have been computed and show that Fe2P-type phase while less compressible than the OII phase is nearly identical in hardness, indicating that none of the HfO2 phases qualify as superhard.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.