Abstract

BackgroundX-chromosomal loci present different inheritance patterns compared to autosomal loci and must be modeled accordingly. Sexual chromosomes are not systematically considered in whole-genome relationship matrices although rules based on genealogical or marker information have been derived. Loci on the X-chromosome could have a significant contribution to the additive genetic variance, in particular for some traits such as those related to reproduction. Thus, accounting for the X-chromosome relationship matrix might be informative to better understand the architecture of complex traits (e.g., by estimating the variance associated to this chromosome) and to improve their genomic prediction. For such applications, previous studies have shown the benefits of combining information from genotyped and ungenotyped individuals.ResultsIn this paper, we start by presenting rules to compute a genomic relationship matrix (GRM) for the X-chromosome (GX) without making any assumption on dosage compensation, and based on coding of gene content with 0/1 for males and 0/1/2 for females. This coding adjusts naturally to previously derived pedigree-based relationships (S) for the X-chromosome. When needed, we propose to accommodate and estimate dosage compensation and genetic heterogeneity across sexes via multiple trait models. Using a Holstein dairy cattle dataset, including males and females, we then empirically illustrate that realized relationships (GX) matches expectations (S). However, GX presents high deviations from S. GX has also a lower dimensionality compared to the autosomal GRM. In particular, individuals are frequently identical along the entire chromosome. Finally, we confirm that the heritability of gene content for markers on the X-chromosome that are estimated by using S is 1, further demonstrating that S and GX can be combined. For the pseudo-autosomal region, we demonstrate that the expected relationships vary according to position because of the sex-gradient. We end by presenting the rules to construct the 'H matrix’ by combining both relationship matrices.ConclusionsThis work shows theoretically and empirically that a pedigree-based relationship matrix built with rules specifically developed for the X-chromosome (S) matches the realized GRM for the X-chromosome. Therefore, applications that combine expected relationships and genotypes for markers on the X-chromosome should use S and GX.

Highlights

  • X-chromosomal loci present different inheritance patterns compared to autosomal loci and must be modeled

  • When only a subset of individuals is genotyped and the genealogy is available for other individuals, it might be advantageous to combine both relationship matrices [2]. This is, for instance, the core of single-step genomic best linear unbiased prediction (SSGBLUP) that results in higher prediction accuracies than GBLUP [2, 3]

  • For a trait expressed in both sexes, we propose a multiple-trait model. This bivariate approach should be applied to model genetic effects that are associated with the autosomes too, here we focus on genetic effects associated with the X-chromosome

Read more

Summary

Introduction

X-chromosomal loci present different inheritance patterns compared to autosomal loci and must be modeled . Accounting for the X-chromosome relationship matrix might be informative to better understand the architecture of complex traits (e.g., by estimating the variance associated to this chromosome) and to improve their genomic prediction. For such applications, previous studies have shown the benefits of combining information from genotyped and ungenotyped individuals. Additive relationships and the associated matrices are important in essential applications such as estimation of the heritability of a complex trait, prediction of genomic values or inference of unknown relationships (e.g., in wild populations). Druet and Legarra Genet Sel Evol (2020) 52:50 in many livestock species They can be inferred from genotypes at a set of markers. Both approaches require that the genomic relationship is scaled appropriately

Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.